2 2 M ay 2 01 3 Sesquilinear forms over rings with involution
نویسنده
چکیده
Many classical results concerning quadratic forms have been extended to hermitian forms over algebras with involution. However, not much is known in the case of sesquilinear forms without any symmetry property. The present paper will establish a Witt cancellation result, an analogue of Springer’s theorem, as well as some local-global and finiteness results in this context. Mathematics Subject Classification (2000) 11E39, 11E81.
منابع مشابه
Hermitian categories, extension of scalars and systems of sesquilinear forms
In this paper we define a notion of Witt group for sesquilinear forms in hermitian categories, which in turn provides a notion of Witt group for sesquilinear forms over rings with involution. We also study the extension of scalars for K-linear hermitian categories, where K is a field of characteristic 6= 2. We finally extend several results concerning sesquilinear forms to the setting of system...
متن کاملSesquilinear forms over rings with involution
Many classical results concerning quadratic forms have been extended to Hermitian forms over algebras with involution. However, not much is known in the case of sesquilinear formswithout any symmetry property. The present paperwill establish aWitt cancellation result, an analogue of Springer’s theorem, as well as some local–global and finiteness results in this context. © 2013 Elsevier B.V. All...
متن کاملCanonical matrices of bilinear and sesquilinear forms
Canonical matrices are given for • bilinear forms over an algebraically closed or real closed field; • sesquilinear forms over an algebraically closed field and over real quaternions with any nonidentity involution; and • sesquilinear forms over a field F of characteristic different from 2 with involution (possibly, the identity) up to classification of Hermitian forms over finite extensions of...
متن کامل. K T ] 7 M ay 2 01 3 K - AND L - THEORY OF GROUP RINGS OVER GL n ( Z )
We prove the Kand L-theoretic Farrell-Jones Conjecture (with coefficients in additive categories) for GLn(Z).
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013